Category Archives: Random Number Generation

Embracing the new. Is it time to ditch pointers in C++?

This post was originally posted December 22, 2014

Recently I had the opportunity to revisit some research that I did circa 1997-1998, because someone asked me to write a book chapter on the subject. It is an interesting process to go back and look at your old work and apply all the things that you have learned in the intervening time period.

In this case the research relied on some C/C++ simulation programmes that I had written. The simulations, even for small cases, performed hundreds of thousands of iterations to estimate lower bounds and so C++ was a natural choice at the time. R was still a fledgling, and Splus simply was not up to extensive simulation work. Given the nature of these simulations, I still do not think I would use R, even though it is very fast these days.

Simulations, being simulations, rely extensively on random number generation, and of course these programmes were no exception. Re-running the programmes seemed trivial, and of course the compute time had been substantially reduced over the years. This lead me to think that I could now explore some more realistic scenarios. If you, the reader, think I am being deliberately mysterious about my simulations, I am not. It is more that the actual research is a side issue to the problems I want to talk about here. The “more realistic inputs” simply correspond to larger simulated DNA databases, inline with those now maintained by many jurisdictions, and a set of allele frequencies generated from a much larger data set than that I had access to in 1997 with a different set of loci.

There would clearly be no story if something did not happen with the new work. My early work was with databases of 100, 400 and 1,000 individuals. When I expanded this to 5,000 and 10,000 individuals I found that things began to go wrong.

Firstly, the programme began to quit unexpectedly on Windows, and produce segmentation faults when compiled with gcc on Linux. The crashes only happened with the larger database sizes, but strangely in the case where N = 1,000 — where there had previously been no crash. I thought initially that this might be because I had inadvertently hard-coded some of the array dimensions, and that the new data sets, or larger runs where causing problems. Extensive examination of the code did not reveal any irregularities.
Random number generators and all that

I did discover fairly early on that I could no longer rely on George Marsaglia’s multiply-with-carry (MWC) uniform random number generator. The reason for this is that the generator, as coded, relies on integers of certain widths, and integer overflow, or wrapping. I had pretty much abandoned this some years ago when a former MSc student, Dr Alec Zwart discovered that there were irregularities in the distribution of the bits. Using a random number a bit at a time is very useful when simulating breeding populations — which is something else I do quite often.

The Mersenne Twister

The Mersenne Twister has been around since 1997, and again advances in computing have made the computing overhead it incurs relatively negligible. My initial switch to a Mersenne Twister uniform random number generator (RNG) was through an implementation distributed by Agner Fog. This implementation has served me well for quite some time, and I have used it extensively. It sadly was not the case this time. I could not get Visual Studio 2013 to understand some of the enums, and faking it caused me problems elsewhere. I am sure there is nothing wrong with this implementation, but I certainly could not get to to work this time.

I discovered by reading around on the web that random number generation has become part of the new C+11 standard, and that it is fairly easy to get a Mersenne Twister random number generator. Most implementations start with a uniform integer, or long integer, random number stream and then wrap different classes around this stream. C++ is no exception

#include <random>
using namespace std;
static mt19937 mtEngine;
uniform_real_distribution<double> rngU;;
void init_gen(unsigned int seed){
  mtEngine = mt19937(seed);
  rngU = uniform_real_distribution<>(0.0, 1.0);
double runif(void){
    return rngU(mtEngine);

I have used a static variable to store the stream in my implementation but there is no requirement to do this.

Nothing is ever normal

I have also, for quite some time, used Chris Wallace’s Fastnorm code for very fast generation of standard normal random variates. However, I found that this too appeared to be causing me problems, especially when I changed operating systems. My programming philosophy these days is that my work should really be portable to any mainstream operating system (Windows, Linux, OS X), especially since I almost never write GUI code any more. Running on both Windows and Linux is useful, because when I want to run really big simulations I often will flick the code over to our cluster which strangely enough does not run on Windows – who knew?

It turns out that the C+11 also has a normal random number generator. I have done very little research to find out what method is used, but my guess is that it is either an inverse CDF method, or at worst a Box-Muller based method. Adding a standard normal generator is easy

static mt19937 mtEngine;
static normal_distribution<double> rngZ;
void init_gen(unsigned int seed){
  mtEngine = mt19937(seed);
  rngZ = normal_distribution<double>(0.0, 1.0);
double snorm(void){
  return rngZ(mtEngine);

So that will work right?

After all of these changes, which do not seem substantial but bear in mind they took me a long time to get to them, everything was stable right? Well no, I was still getting a crash when N = 10,000, and this was not happening when I started the simulation with that case.
Java to the rescue

I decided, probably incorrectly with hindsight, that I must be making some sort of stupid mistake with allocating memory and releasing it. I decided to take that completely out of the equation by switching to Java. A port from C++ to Java is actually a relatively painless thing to do, and I had a working version of my programme in a couple of hours. This was made easier by the fact that my colleague Duncan Taylor had ported Ross Ihaka’s C code, ripped out of R, for gamma random number generation (yes I need that too), and with a little tweaking I had it running in my programme as well. The Java port let me recognize that I had done some silly things in my original programme, such as storing an entire bootstrap sample before processing it and in the process chewing up CPU and memory time with needless copying. And after a little more hacking (like three days) it ran to my satisfaction and all simulations duly completed with about three hours of run time.

But what about C++?

Java has some pretty cool ideas, and it is a fun and easy language to programme in. However, my failure to get the C++ working was weighing heavily on my mind. I like to think that I am a hell of a lot better C++ programmer than a Java programmer, and I dislike the idea that I might be writing slower programmes. I also do not think Java is currently well-suited to scientific programming. I am sure some readers will tell me this is no longer true, but access to a well accepted scientific code library is missing, and although there are many good projects, a lot of them are one-man efforts, or have been abandoned. A good example of the latter is the COLT library from CERN.

Out with pointers

I thought about this for sometime, and eventually it occurred to me that I could write a C++ programme that looked like a Java programme — that is, no pointers. C++ purists might shudder, but if you think of Java as simplified C++, then the concept is not so strange. Java treats every object argument in a function as being a reference. C++ can replicate this behaviour very easily by simply using its reference notation. The big trade-off was that I was going to also have to drop the pointers I used for dynamic allocation of memory. Java sort of fudges this as far as I can tell, because although the scalar types (int, double, boolean and others) are generally not treated as references, I think native arrays of them are, e.g. int[] or double[].


The Standard Template Library (STL) provides a set of low-overhead C++ template container classes, such as lists, vectors, maps and queues. These classes can contain themselves, and they can be dynamically resized at execution time. I have avoided using them in this way, especially when writing code to be very fast. However, I am fairly sure my colleague Brendon Brewer, who is much younger and a more modern C++ programmer, has told me that he never uses pointers. Given I had just finished for the year, this seemed like an ideal quick summer project.

Another couple of days recoding got me to running mode, and now it is time to reveal probably what was the issue all along. Remember when I said I did this:

double runif(void){
    return rngU(mtEngine);

What I actually did was this:

double runif(void){
    return mtEngine() / 4294967295.0;

The large constant there is $$2^{32}-1$$, the largest unsigned integer that can be represented on a 32-bit CPU. The mt19997 function mtEngine() returns an unsigned 32-bit integer, but for reasons that still escape me this piece of code:

return (int)floor(b * runif());

which should return a number between 0 and b-1 inclusive, was returning b, thereby causing the programme to address unallocated memory, and hence the crash. The reason it took so long to happen is that the random number stream had to be used for a very long time. Using the uniform_read_distribution class stopped this from happening.

What about performance?

So did I take a performance hit? I cannot say equivocally without going back to my original programme and adjusting the RNGs, but it appears that the C++ version actually takes about 10 minutes longer than the Java version. This is a very poor comparison, because the Java version is running on my Windows PC (core i7, 32GB RAM, HDD), and the C++ version is running on my Macbook (core i7, 16GB RAM, SSD), but also because the new C++ version is “more objected-oriented” than the Java version. That is, firstly I used native arrays, and arrays of arrays in Java, like int[][] and double[][]. If I had used Java ArrayLists (why would you), it might have been a different story. Secondly, there is a bit more OO design and architecture in the C++ version, including things like operator overloading and more extensive use of objects to represent the input data. All of these things cost, and they are probably costing a little too much in execution time, although they pay off in readability and usability, especially in well designed IDEs like Visual Studio and Xcode. Finally, my original C++ programme never finished, so I have no idea actually how long it would take to do the same set of simulations. I think in this case I will take a programme that works in three hours over a programme that quickly crashes in one.

Share Button